Data and Image Models Maneesh Agrawala
 CS 448B: Visualization Fall 2018

Last Time: The Purpose of Visualization

Three functions of visualizations

Record information

- Photographs, blueprints, ...

Support reasoning about information (analyze)

- Process and calculate
- Reason about data
- Feedback and interaction

Convey information to others (present)

- Share and persuade
- Collaborate and revise
- Emphasize important aspects of data

Record information

Gallop, Bay Horse "Daisy" [Muybridge 1884-86]

Analysis: Challenger

O-ring damage
index, each launch

Temperature (${ }^{\circ} \mathrm{F}$) of field joints at time of launch

Visualizations drawn by Tufte show how low temperatures damage O-rings [Tufte 97]

Communicate: Most Powerful Brain

Beautiful Evidence [Tufte]

Confuse

Peak time for sports and leisure

Announcements

Class participation requirements

- Complete readings before class
- In-class discussion
- Post at least 1 discussion substantive comment/question by noon the day after lecture

Office Hours on website

Class wiki
https://magrawala.github.io/cs448b-fa 18

Assignment 1: Visualization Design

Simpsons Episodes Data

The site data.world has collected a data set describing the first 600 episodes of the Simpsons. For each
episode the data set contains the following information.
Number of records: $\mathbf{6 0 0}$
Variable Names:
id: Episode number
image_url: Link to image for the episode
imdb_rating: Rating from IMDB
imdb_votes: Votes from IMDB
number_in_season: Number of episodes in season
number_in_series: Episode number
original_air_date: Date of first airing
original_air_year: Year of first airing
original_air_year: Year of first airing
production_code:
season: Season numb
title: Episode title
us_viewers in millions: Number of viewers
video_url: Link to episode online
views: Number of views for online episode
We've cleaned up this dataset and posted in csv format: simpsons_episodes.csv

Simpsons Episodes
 Due by noon on Mon Oct 1

Dała and Image Models

The big picture

```
task
data
    physical type
        int, float, etc.
    abstract type
        nominal, ordinal, etc.
    #
domain
    metadata
    semantics
    conceptual model
```


Topics

Properties of data or information
Properties of the image
Mapping data to images

Data

Data models vs. Conceptual models

Data models: low level descriptions of data

- Math: Sets with operations on them
\square Example: integers with + and \times operators

Conceptual models: mental constructions

- Include semantics and support reasoning

Examples (data vs. conceptual)
\square (1D floats) vs. Temperature
\square (3D vector of floats) vs. Space

Taxonomy

- 1D (sets and sequences)
- Temporal
- 2D (maps)
- 3D (shapes)
- nD (relational)
- Trees (hierarchies)
- Networks (graphs)

Are there others?

The eyes have it: A task by data type taxonomy for information
visualization [Schneiderman 96]

Types of variables

Physical types

- Characterized by storage format
- Characterized by machine operations

Example:
bool, short, int32, float, double, string, ...

Abstracł types

- Provide descriptions of the data
- May be characterized by methods/attributes
- May be organized into a hierarchy

Example:
plants, animals, metazoans, ...

Nominal, ordinal and quantitative

\mathbf{N} - Nominal (labels)

Fruits: Apples, oranges, ...
Operations:
O - Ordered
Quality of meat: Grade A, AA, AAA
Operations: =, \#,
Q - Interval (location of zero arbitrary
Dates: Jan, 19, 2006; Loc.: (LAT 33.98, LON -118.45)
Like a geometric point. Cannot compare directly
Only differences (i.e. intervals) may be compared
Operations: $=, \neq,<,>, \leq, \geq$,
Q - Ratio (location of zero fixed)
Physical measurement: Length, Mass, Temp, ..

Counts and amounts

Like a geometric vector, origin is meaningful
Operations: =, \#, <, >, s, \#, -,

From data model to $\mathbf{N}, \mathbf{O}, \mathbf{Q}$ data type

Dafa model

- 32.5, 54.0, -17.3, ...
- floats

Concepłual model

- Temperature

Data type

- Burned vs. Not burned (N)
- Hot, warm, cold (O)
- Continuous range of values (Q)

Relational data model

Represent data as a table (relation)
Each row (tuple) represents a single record
Each record is a fixed-length tuple
Each column (attribute) represents a single variable
Each attribute has a name and a data type
A table's schema is the set of names and data types
A database is a collection of tables (relations)

Relational algebra [Codd 1970]

Data transformations (SQL)

- Selection (WHERE) - restrict values
\square Projection (SELECT) - choose subset of attributes
- Sorting (ORDER BY)
- Aggregation (GROUP BY, SUM, MIN, ...)
- Set operations (UNION, ...)
- Combine (INNER JOIN, OUTER JOIN, ...)

Statistical data model

Variables or measurements Categories or factors or dimensions
Observations or cases

Statistical dafa model

Variables or measurements
Categories or factors or dimensions
Observations or cases

Month	Control	Placebo	300 mg	450 mg
March	165	163	166	168
April	162	159	161	163
May	164	158	161	153
June	162	161	158	160
July	166	158	160	148
August	163	158	157	150

Blood Pressure Study (4 treatments, 6 months)

Dimensions and measures

Dimensions: Discrete variables describing data Dałes, całegories of values (independent vars)

Measures: Data values that can be aggregated Numbers to be analyzed (dependent vars) Aggregate as sum, count, average, std. deviation

Dimensions and measures

Independent vs. dependent variables

- Example: y = f(x, a)
- Dimensions: Domain(x) \times Domain(a)
\square Measures: Range(y)

Image

Marks and Visual Variables

Coding information in position

1. A, B, C are distinguishable
2. Three pts colinear: B between A and C
3. $B C$ is twice as long as $A B$
\therefore Encode quantitative variables
"Resemblance, order and proportional are the three signfields in graphics." - Bertin

Coding info in color and value

Value is perceived as ordered
\therefore Encode ordinal variables (O)

\therefore Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered
\therefore Encode nominal variables (N) using color

Bertins' "Levels of Organization"

Position	N	\bigcirc	Q
Size	N	\bigcirc	Q
Value	N	\bigcirc	Q
Texture	N	-	
Color	N		
Orientation	N		
Shape	N		

N Nominal

- Ordered

Q Quantitative

Note: $\mathbf{Q}<\mathbf{O}<\mathbf{N}$

Note: Bertin actually breaks visual variables down into differentiating (\neq) and associating ($($)

Visual Encoding

\section*{| Univariate data $\begin{array}{r}\text { A B C } \\ 11\end{array}$ |
| :---: |
| 1 |}

Tukey box plot

Scatter plot is common

Trivariałe dała

\section*{| | A $\mathbf{B} \mathbf{C}$ | | |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | | | |
| 2 | | | |
| 3 | | | |}

3D scatter plot is possible

Three variables

Two variables $[x, y$] can map to points

- Scatterplots, maps, ...

Third variable [z] must use ...

- Color, size, shape, ...

$$
\underset{\mathrm{Y}}{\boldsymbol{\sim} \boldsymbol{\mu}^{\mathrm{Z}} \Leftarrow \angle 1}
$$

Large design space (visual metaphors)

[Bertin, Graphics and Graphic Info. Processing, 1981]

Multidimensional data

How many variables can be depicted in an image?

	A B	C
1		
2		
3		
4		
5		
6		
7		
8		

Multidimensional data

How many variables can be depicted in an image?
"With up to three rows, a data table can be constructed directly as a single image ... However, an image has only three dimensions. And this barrier is impassible." Bertin

	A B	C
1		
2		
3		
4		
5		
6		
7		
8		

Encodings: Map Data to Mark Attr.

Deconstructions

Given Image Describe Encodings

mark: lines
data \rightarrow size (length)

mark: points
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow$ y-pos

mark: points
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow$ y-pos
data $_{3} \rightarrow$ color
:---
data $_{1} \rightarrow$ x-pos
data $_{2} \rightarrow$ y-pos
data $_{3} \rightarrow$ color
data $_{4} \rightarrow$ size

Stock chart from the late 90s

Stock chart from the late 90s

- Time $\rightarrow \mathbf{x}$-position (\mathbf{Q}, linear)
\square Price \rightarrow y-position (\mathbf{Q}, linear)

Playfair 1786/1801

Playfair 1786/1801

- Time $\rightarrow x$-position (\mathbf{Q}, linear)
- Exports/Imports Values $\rightarrow \mathbf{y}$-position (\mathbf{Q}, linear)
- Exports/lmports \rightarrow color (\mathbf{N}, \mathbf{O}, nominal)
- Balance for/against \rightarrow area (maybe length??) (Q, linear)
- Balance for/against \rightarrow color (\mathbf{N}, \mathbf{O}, nominal)

Minard 1869: Napoleon's march

Single axis composition

\because

[based on slide from Mackinlay]

Mark composition

$$
\begin{aligned}
& \text { temperature } \rightarrow \text { y-position (Q, linear) } \\
& \text { Iongitude } \rightarrow \text { x-position (Q, linear) }
\end{aligned}
$$

temp over longitude ($\mathrm{Q} \times \mathrm{Q}$)
[based on slide from Mackinlay]

Mark composition

$$
\begin{aligned}
& \text { latitude } \rightarrow \mathrm{y} \text {-position (Q, linear) } \\
& \text { army size } \rightarrow \text { width (} \mathrm{Q} \text {, linear) } \\
& \text { army position }(\mathrm{Q} \times \mathrm{Q}) \text { and army size }(\mathrm{Q})
\end{aligned}
$$

Minard 1869: Napoleon's march

Depicts at least 4 quantitative variables Any others?

Automated design

Jock Mackinlay's APT 86

Combinatorics of encodings

Challenge:
Assume 8 visual encodings and n data fields
Pick the best encoding from the exponential number of possibilities $(\mathrm{n}+1)^{8}$

Principles

Challenge:

Assume 8 visual encodings and n data fields
Pick the best encoding from the exponential number of possibilities $(\mathrm{n}+1)^{8}$

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering:

Encode the most important information in the most effective way

Mackinlay's expressiveness criteria

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Cannot express the facts

A one-to-many ($1 \rightarrow \mathbf{N}$) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

Expresses facts not in the data

A length is interpreted as a quantitative value; \therefore Length of bar says something untrue about \mathbf{N} data

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of perception lecture

Mackinlay's ranking

Quantitative

Conjectured effectiveness of the encoding

Graphical Perception

| Most accurate | Position (common) scale
 Position (non-aligned) scale | |
| :--- | :--- | :--- | :--- |
| Length | | |
| Least accurate | Angle | |
| | | Area |
| | | Color hue-saturation-density |

Automatic chart construction

Automating the design of graphical presentation of relational information J. Mackinlay, 1986

Encode most important data using highest ranking visual variable for the data type

Year	Exports	Imports	1. Year (Q)
1700	170,000	300,000	2. Exports (Q)
1701	171,000	302,000	3. Imports (Q)
1702	176,000	303,000	

[Mackinlay, APT, 1986]

Limitations

Does not cover many visualization techniques
\square Bertin and others discuss networks, maps, diagrams

- They do not consider 3D, animation, illustration, photography, ...

Does noł model interaction

Summary

Formal specification

- Data model
- Image model
- Encodings mapping data to image

Choose expressive and effective encodings

- Formal test of expressiveness
- Experimental tests of perceptual effectiveness

